

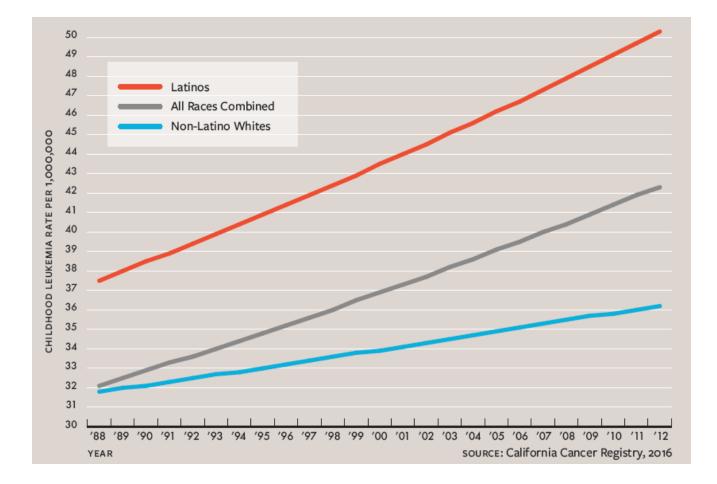
Environmental and Dietary Factors Contributing to the Rise of Childhood Leukemia

Collaborative on Health and the Environment

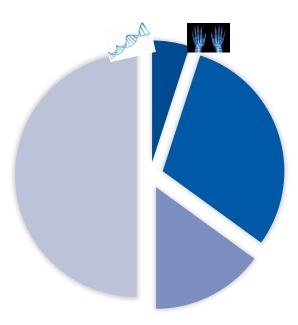
Webinar - June 3, 2020

Catherine Metayer, MD, PhD

cmetayer@berkeley.edu

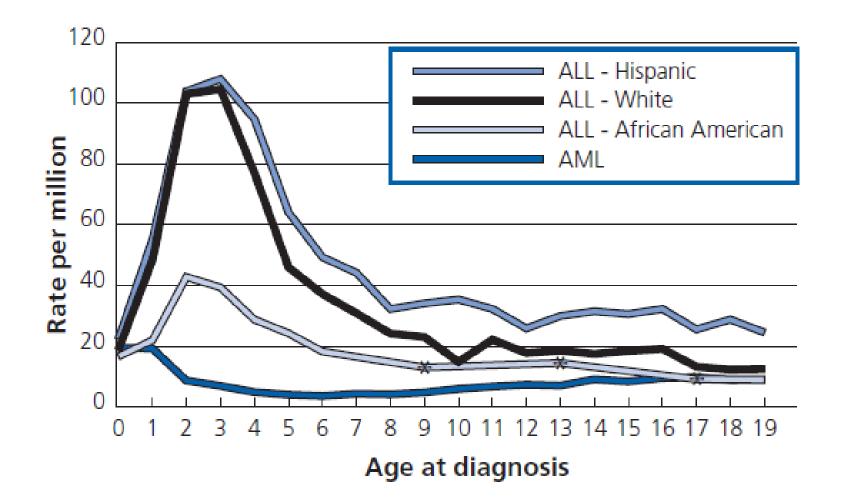

Childhood Leukemia

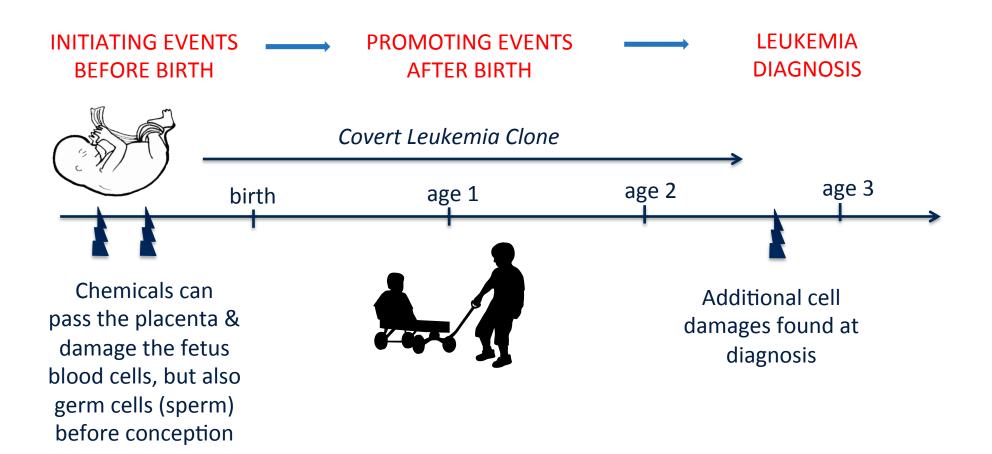
- First cancer in children
- 3,800 diagnosed per year in the U.S.
- Second cause of death in children
- Lifelong complications in survivors


Incidence of Childhood Leukemia in California

35% increase in the past 40 Years

Known Risk Factors 25+ years ago

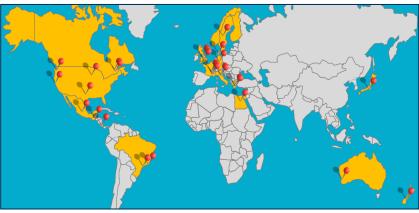

genetic syndromes & x-rays accounted for <10% of all childhood leukemia


Factors under Investigation

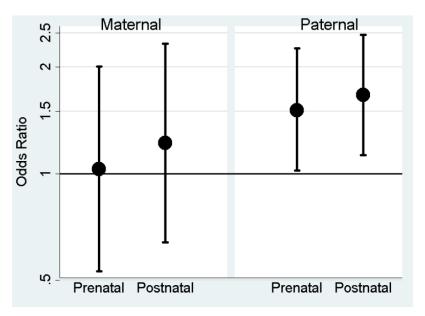
- Immune regulation Fetal growth **Environmental exposures** At home Smoking Many chemicals are • Paints known to cause • Solvents cancer in adults Pesticides At work for parents Outdoor pollution Diet (mother and child)
 - Ionizing and non-ionizing radiation
 - Genetic

Age at Diagnosis

Natural History of Leukemia



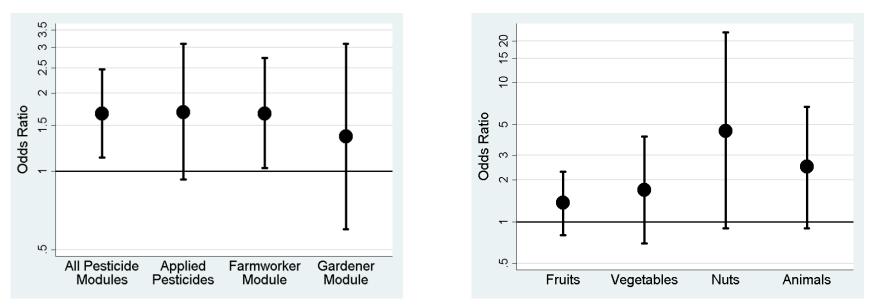
CLYC Childhood Leukemia International Consortium



Occupational Exposures to Pesticides and Childhood Acute Lymphoblastic Leukemia (ALL)

Adjusted for child's sex, age, ethnicity, mother's race and household income

Gunier, Env Research, 2017

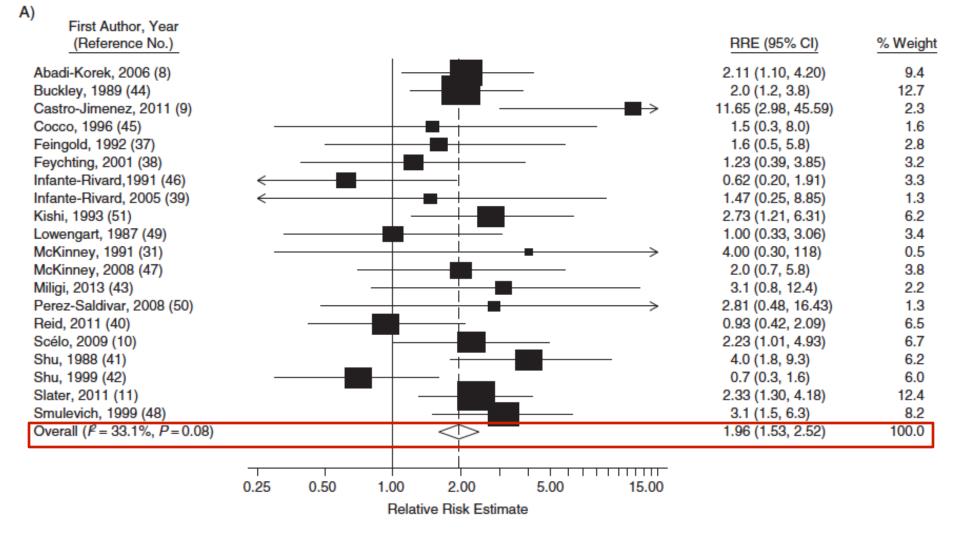


- Pooled original data for ~8,000 cases and ~14,000 controls
- Maternal exposure pregnancy
 OR=1.01 (0.78-1.30)
- Paternal exposure periconception
 OR=1.20 (1.06-1.38)

Bailey, Int J Cancer, 2014

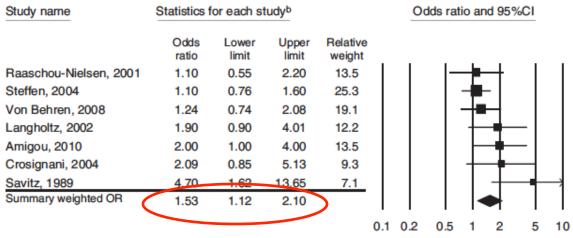
Routes of Pesticide Exposure

Mother Jones and the Foundation for National Progress Photographer Matt Black


Home Use of Any Pesticides

Time period	Acute Lymphoblastic Leukemia (ALL)			Acute Myeloid Leukemia (AML)				
	# Cases	OR (95% CI)		# Cases	OR	(95% CI)		
Before conception	2785	1.4	(1.2,1.5)	173	1.5	(1.0, 2.2)		
During pregnancy	5055	1.4	(1.3, 1.5)	345	1.5	(1.2, 2.0)		
After birth	4162	1.4 (1.2, 1.5)		198	1.1	(0.8, 1.5)		

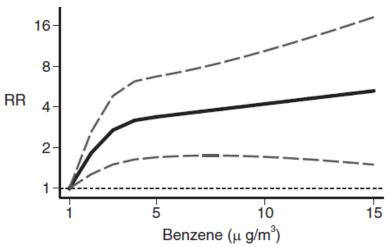
Adjusted for age, sex, birth year group, ethnicity, highest level of education either parent +/-birth order.


Source: Bailey et al, IJE, 2015

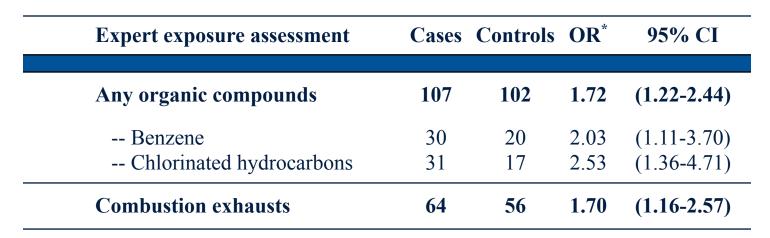
Sources of Benzene at Work and Home and Childhood Leukemia

Carlos-Wallace et al. Am J Epidemiol. 2016;183(1):1-14

Air Pollution and Childhood Leukemia



Boothe et al / Am J Prev Med 2014;46(4):413-422


Figure 1. Forest plot of case-control studies examining the association between residential traffic exposure assessed during the <u>postnatal period</u>^a and <u>childhood</u> leukemia, and the random effects weighted summary OR and 95% Cl

Childhood acute myeloid leukemia \rightarrow

Fillippini, EHP 2019

& Childhood ALL---Latino Fathers

* OR adjusted for child's age at diagnosis/reference date, sex, maternal race, and household annual income

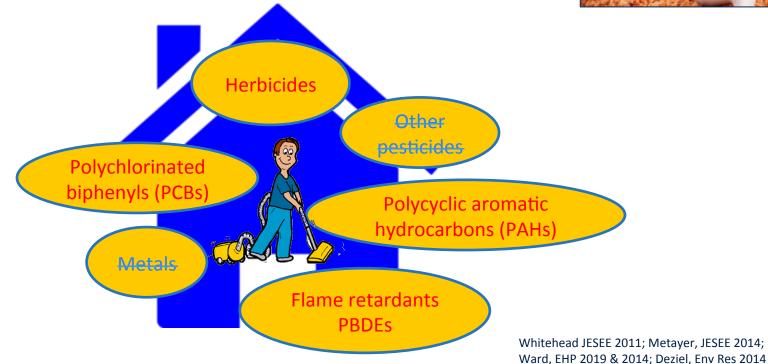
Metayer, Env Research (2016)

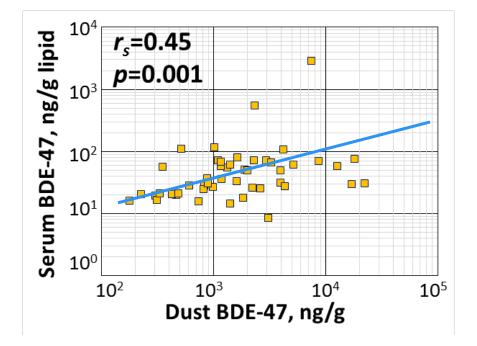
Home Use of Paints & Childhood ALL

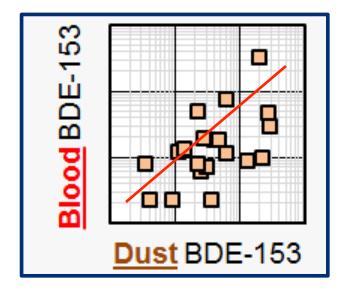
Time window	Exposure	# Cases	OR*	95% CI	
Before conception	Any paints	3,000	1.42	(0.92-2.19)	
	Water-based paints	1,146	0.87	(0.72-1.04)	
	Oil-based paints Professional	1,146 608	1.27 1.53	(1.03-1.57) (1.03-2.26)	>
Pregnancy	Any paints	1,962	3.91	(1.54-9.90)	
	Water-based paints	1,387	0.96	(0.80-1.15)	
<	Oil-based paints Professional	1,387 1,305	1.22 1.66	(0.98-1.53) (1.21-2.28)	>
After birth	Any paints	35	1.12	(1.07-1.39)	
	Water-based paints Oil-based paints	1,157 <u>1,157</u>	1.01 <u>1.17</u>	(0.83-1.23) (0.94-1.45)	
	Professional	928	1.46	(1.18-1.80)	>

* OR adjusted for child's age at diagnosis/reference date, sex, maternal race, and household annual income

Chemicals in Home Dust

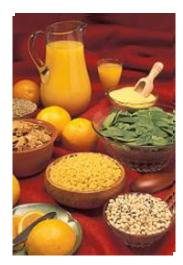

- Dust is a reservoir of persistent chemicals
- Young children are exposed via hand-to-mouth and skin contact
- Measured 50+ chemicals ~ 500 homes

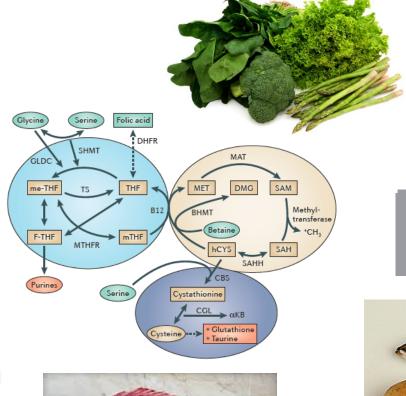

E E


CALIFORNIA

CHILDHOOD

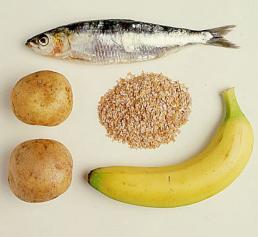
Chemicals Transmitted from Dust to Blood Example with flame retardants - BDEs





Mother

Diet and Sources of One Carbon (Folate) Metabolism Nutrients



Prenatal Vitamin Supplementation and Childhood ALL

	Vitamins (Any Time)				Folic Acid (Any Time)							
	No. Exposed		oosed	1		Test for	No.	No. Exposed				Test for
	Studies	Controls	Cases	OR	(95% CI) ^a	Interaction	Studies	Controls	Cases	OR	(95% CI) ^a	Interaction
Parental education ^e												
Overall ^b	12	6640	4336	0.85	(0.78–0.92)		8	2164	1228	0.80	(0.71–0.89)	
None/Primary	12	873	447	0.72	(0.60-0.88)	$P = 0.14^{d}$	8	352	132	0.47	(0.33-0.68)	$P = 0.01^{d}$
Secondary	12	2649	1879	0.78	(0.68–0.88)		8	660	410	0.73	(0.59-0.90)	
Tertiary	12	3118	2010	0.97	(0.86–1.09)		8	1152	686	0.96	(0.82–1.12)	

^aAdjusted for age, sex, ethnicity, parental education, and study. OR for parental education is adjusted for age, sex, ethnicity, and study

Prenatal B Vitamin Supplements & Childhood ALL by Mother's Ethnicity

Vitamin supplements before	Hispanic mothers ^a	White mothers ^a				
pregnancy	234 cases, 296 controls	265 cases, 374 controls				
None	(Ref)	(Ref)				
Moderate intake	1.12 (0.44-2.84)	1.25 (0.75-2.07)				
High intake	0.36 (0.17-0.74)	0.76 (0.50-1.16)				

Conditional logistic models adjusted for father's education, mother's education, household income, maternal age at child's birth, and nutrient intake from food. N= number of discordant pairs/triplets

*For folic acid, moderate intake is >0 & <600 μ g and high intake is >600 μ g. For vitamins B12, B6, and riboflavin, moderate intake is

>0 & <5 μg B12 and <1.5 mg B6 and riboflavin, and high intake is \geq 5 μg B12 and \geq 1.5 mg B6 and riboflavin.

Singer, Cancer Causes and Control, 2016

Peri-conception Maternal Diet Healthy Eating Index (HEI) 2010

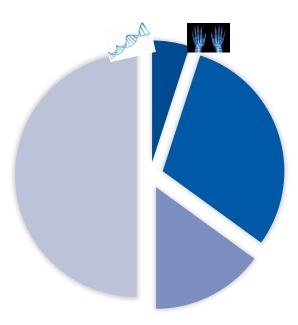
	ALL			AML				
	638 cases, 84	3 controls	96 cases, 125 controls					
Modified HEI-2010	Odds Ratio (95% CI)	P-value		Odds Ratio (95% CI) P-valu				
Continuous score ^a	0.88 (0.78-0.98)	0.88(0.78-0.98) 0.02		0.76(0.54-1.13)	0.19			
Q1 (<12.5)	(Ref)			(Ref)				
Q2 (12.5-16)	0.71 (0.51-1.00)	0.06		0.65 (0.25-1.69)	0.43			
Q3 (16-20)	0.73 (0.54-1.01)	0.06		0.60 (0.21-1.68)	0.26			
Q4 (>20)	0.66 (0.47-0.93	0.01		0.42 (0.15-1.15)	0.14			

*Models adjusted for mother's ethnicity, father's education, mother's education, household income, maternal age at child's birth, and vitamin supplement use.

^a ORs reflect a 5 point increase in HEI-2010 score.

Singer et al., British Journal of Nutrition, 2016

Breastfeeding and Childhood ALL



	No. of	AL	.L	Contr	Controls		95% CI
	Studies	No.	%	No.	%	ORª	95% 01
Breastfeeding	11	7,399		11,181			
No		2,696	36.4	3,798	34.0	1.00	Referent
Yes		4,639	62.7	7,264	65.0	0.95	0.89, 1.02
Missing		64	0.9	119	1.0		
<6 months		2,899	39.2	4,324	38.7	1.01	0.94, 1.0
≥6 months		1,717	23.2	2,892	25.9	0.86	0.79, 0.9
Missing		87	1.2	167	1.5		
Breastfeeding duration							
1 month or less		1,318	17.8	1,896	17.0	1.06	0.97, 1.1
2-4 months		1,284	17.4	1,894	16.9	0.99	0.90, 1.0
5–7 months		793	10.7	1,303	11.7	0.90	0.81, 1.0
8-10 months		439	5.9	831	7.4	0.78	0.69, 0.8
11–13 months		393	5.3	690	6.2	0.83	0.72, 0.9
14 months or more		389	5.3	602	5.4	0.92	0.79, 1.0
Missing		87	1.2	167	1.5		

Rudant et al., AJE 2015

Known Risk Factors 25 years+ ago

genetic syndromes & x-rays accounted for <10% of all childhood leukemia

Known Risk Factors Today

Whitehead, Curr Probl Pediatr Adolesc Health Care 2016; 46(10)):317-352 Metayer, pediatrics. 2016; 138(Suppl 1): S45-S55

Concluding Remarks

- POPULATION-BASED EPIDEMIOLOGIC STUDIES HAVE PROVIDED "ENOUGH" EVIDENCE TO START PREVENTION
 - **Reduce** exposure to multiple harmful chemicals from multiple sources
 - Increase healthy diet during pregnancy and breastfeeding
- WHAT WE HAVE NOT (FULLY) ADDRESSED
 - **CUMULATIVE IMPACT** of those exposures, including social determinants
 - **CONTRIBUTION OF GENETIC** susceptibility
 - MECHANISTIC PATHWAYS
 - ENVIRONMENTAL IMPACT IN CANCER SURVIVORS

Visit our website @ circle.berkeley.edu

Childhood Leukemia and Primary Prevention


CrossMark

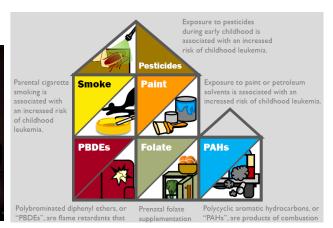
Todd P. Whitehead, PhD,^{a,b} Catherine Metayer, MD, PhD,^{a,b} Joseph L. Wiemels, PhD,^{b,c} Amanda W. Singer, PhD,^a and Mark D. Miller, MD, MPH^{b,d}

Curr Probl Pediatr Adolesc Health Care 2016;46:317-352

Childhood Leukemia: A Preventable Disease

Catherine Metayer, MD, PhD,^a Gary Dahl, MD,^b Joe Wiemels, PhD,^c Mark Miller, MD, MPH^d PEDIATRICS Volume 138, number s1, November 2016

Finally, a resource that clearly explains the multiple factors that influence our health across the lifespan – the natural built, chemical, food, economic, and social environments - and how they interact with genetics and


promote health and prevent disease.

Download A Story of Health at http://coeh.berkeley.edu/ucpehsu/soh.html

Thank you

- **Collaborators**: Catherine Metayer, Steve Rappaport, Todd Whitehead, Alice Kang, Bob Gunier, Amelia Singer (UC Berkeley); Joe Wiemels (USC), Mark Miller (UCSF); Gary Dahl (Stanford); Myrto Petreas (CA Department of Toxic Substances Control); Mary Ward and Joanne Colt (National Cancer Institute)
- Participating families and hospitals, and CLIC members
- Sponsors: National Institute of Environmental Health Sciences and National Cancer Institute (R01ES09137; P42ES04705-18; P50ES018172-09); Environmental Protection Agency (RD83451101 & RD83615901); NCI contract 7590 & N02-CP-11015; and CHILDREN with CANCER, UK

Catherine Metayer has no financial relationships to disclose or conflicts of interest to resolve